SKET 400

SEMIPACK[®] 4

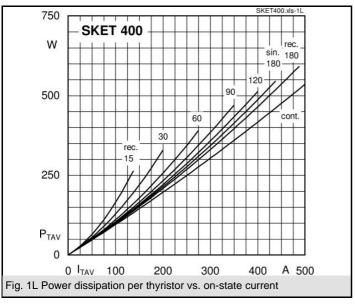
Thyristor Modules

SKET 400

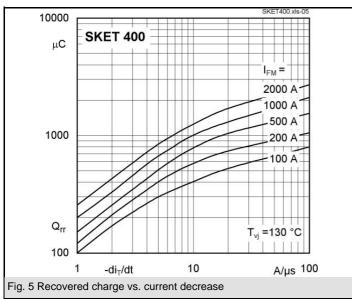
Features

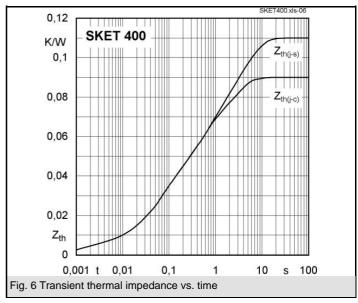
- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate
- UL recognized, file no. E 63 532

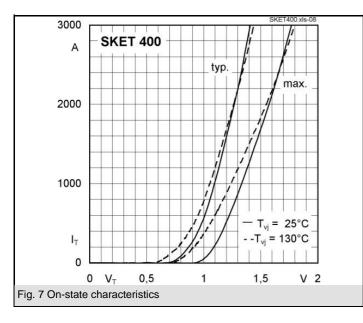
Typical Applications

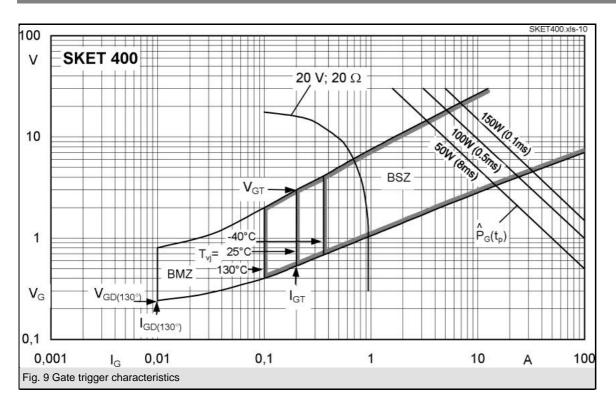

- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions
- 2) The screws must be lubricated

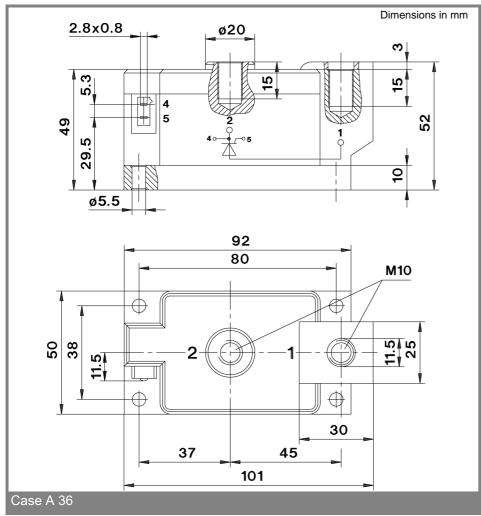

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 700 A (maximum value for continuous operation)
V	V	I_{TAV} = 400 A (sin. 180; T_c = 84 °C)
900	800	SKET 400/08E
1300	1200	SKET 400/12E
1500	1400	SKET 400/14E
1700	1600	SKET 400/16E
1900	1800	SKET 400/18E


$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Α
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A²s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A²s
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V
T_{gd} $T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$ 1	$m\Omega$
	mA
t_{or} $V_D = 0.67 * V_{DPM}$	μs
Ai D . DIAM	μs
	A/µs
, , , , , , , , , , , , , , , , , , ,	V/µs
$t_{\rm q}$ $T_{\rm vj} = 130 ^{\circ}{\rm C}$, 150 200	μs
I I VI	mA
	mA
V_{GT} $T_{vj} = 25 ^{\circ}\text{C}$; d.c. min. 3	V
I_{GT} $I_{vi} = 25 ^{\circ}\text{C}$; d.c. min. 200	mΑ
V_{GD} $T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$ max. 0,25	V
GD VJ	mA
tn(J-c)	K/W
$R_{th(j-c)}$ sin. 180 0,095	K/W
(11)(1-0)	K/W
tn(c-s)	K/W
l ^{vj}	°C
T _{stg} - 40 + 130	°C
V _{isol} a. c. 50 Hz; r.m.s.; 1s / 1 min. 3600 / 3000	V~
M_s to heatsink $5 \pm 15 \%^{1}$	Nm
	Nm
a 5 * 9,81 r	m/s²
m approx. 940	g
Case A 36	


© by SEMIKRON







This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.